CathepsinKCre mediated deletion of βcatenin results in dramatic loss of bone mass by targeting both osteoclasts and osteoblastic cells

نویسندگان

  • Paula Ruiz
  • Marta Martin-Millan
  • M. C. Gonzalez-Martin
  • Maria Almeida
  • Jesús González-Macias
  • Maria A. Ros
چکیده

It is well established that activation of Wnt/βcatenin signaling in the osteoblast lineage leads to an increase in bone mass through a dual mechanism: increased osteoblastogenesis and decreased osteoclastogenesis. However, the effect of this pathway on the osteoclast lineage has been less explored. Here, we aimed to examine the effects of Wnt/βcatenin signaling in mature osteoclasts by generating mice lacking βcatenin in CathepsinK-expressing cells (Ctnnb1f/f;CtsKCre mice). These mice developed a severe low-bone-mass phenotype with onset in the second month and in correlation with an excessive number of osteoclasts, detected by TRAP staining and histomorphometric quantification. We found that WNT3A, through the canonical pathway, promoted osteoclast apoptosis and therefore attenuated the number of M-CSF and RANKL-derived osteoclasts in vitro. This reveals a cell-autonomous effect of Wnt/βcatenin signaling in controlling the life span of mature osteoclasts. Furthermore, bone Opg expression in Ctnnb1f/f;CtsKCre mice was dramatically decreased pointing to an additional external activation of osteoclasts. Accordingly, expression of CathepsinK was detected in TRAP-negative cells of the inner periosteal layer also expressing Col1. Our results indicate that the bone phenotype of Ctnnb1f/f;CtsKCre animals combines a cell-autonomous effect in the mature osteoclast with indirect effects due to the additional targeting of osteoblastic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی اثر ایزوپرترنول (آگونیست بتا آدرنرژیک) بر تمایز سلول‌های بنیادی مزانشیمی مغز استخوان انسان به استئوبلاست در شرایط آزمایشگاهی

Background and Objective: The importance of β-adrenergic signals in bone formation and resorption has been well investigated. However, little is known about the role of β -adrenergic signals in osteoblastic differentiation of mesenchymal stem cells (MSCs), which is critically important in bone physiology and pharmacology. In this study, RUNX2 and Osteocalcin gene expression were quantified in M...

متن کامل

Osteoblastic Lrp4 promotes osteoclastogenesis by regulating ATP release and adenosine-A2AR signaling

Bone homeostasis depends on the functional balance of osteoblasts (OBs) and osteoclasts (OCs). Lrp4 is a transmembrane protein that is mutated in patients with high bone mass. Loss of Lrp4 in OB-lineage cells increases bone mass by elevating bone formation by OBs and reducing bone resorption by OCs. However, it is unclear how Lrp4 deficiency in OBs impairs osteoclastogenesis. Here, we provide e...

متن کامل

Control of bone resorption in mice by Schnurri-3.

Mice lacking the large zinc finger protein Schnurri-3 (Shn3) display increased bone mass, in part, attributable to augmented osteoblastic bone formation. Here, we show that in addition to regulating bone formation, Shn3 indirectly controls bone resorption by osteoclasts in vivo. Although Shn3 plays no cell-intrinsic role in osteoclasts, Shn3-deficient animals show decreased serum markers of bon...

متن کامل

The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage.

Both estrogens and androgens act on bone marrow stromal/osteoblastic cells to inhibit the production of local factors that promote osteoclast development. Based on this and the evidence that loss of sex steroids up-regulates not only osteoclastogenesis but also osteoblastogenesis, we have hypothesized that cells of the osteoblastic lineage are the mediators of the adverse effects of sex steroid...

متن کامل

TRANCE Is Necessary and Sufficient for Osteoblast-mediated Activation of Bone Resorption in Osteoclasts

TRANCE (tumor necrosis factor-related activation-induced cytokine) is a recently described member of the tumor necrosis factor superfamily that stimulates dendritic cell survival and has also been found to induce osteoclastic differentiation from hemopoietic precursors. However, its effects on mature osteoclasts have not been defined. It has long been recognized that stimulation of osteoclasts ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016